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AbstrarL Based on the Hartree-Fmk approximation we propose a non-linear spin- 
wave theoly of anisotropic I D  (or quasi-ro) quantum Heisenberg antifemmagnets, which 
reduces to the known spin-wave theories of isotropy when our anisotropy parameter 
6 takes special values. In the HarIr-Fwzk approximation the Wn- t ransformed 
Hamiltonian is equivalent to the Holstein-PrimakoB-IraansIormed Hamiltonian truncated 
up to quartic operator terms. Ihe spin-wave lifetime is obtained in the f i r s t ade r  
approximation. For very small 6, the Ntel temperature TN is much smaller than the 
coupling constant .I. in contrast with TN - J in the ID isotropic case, so that our 
non-linear anisotmpic spin-wave theory is suitable for a description ot the ordering 
phase as well as the paramagnetic phase (up to J) of layer-like anlifcrromagnets. 
Applied to the antiferromagnetism of the cuprate b z C u O ~ ,  our quasi-m non-linear 
spin-wave theory describes quite m1isfacto"ly the aisting aperimenu1 data of the N6el 
transition temperalure, the "elation length above the Nlel temperature, and staggered 
magnetization of the material if J = 1034 K and the anisotropy parameter is set to be 
4 x 10-5. 

1. Introduction 

Quantum Heisenberg antiferromagnets (QHAFM) have recently attracted much 
attention due to their relevance to high-temperature oxide superconductivity. 
Undoped materials La,CuO, and RBa,Cu,O, (where R is a rare-earth element) are 
insulating antiferromagnets (AFM) that can be described by QHAF'M models [1,2]. 
Lightly doped cuprates are antiferromagnetic insulators. Even in heavily doped 
superconducting materials there are antiferromagnetic fluctuations that are believed 
to play some important roles in the superconductivity of the cuprates [3]. 

Conventional non-linear spin-wave theory [4,5], an improved version of linear 
spin-wave theory [a] established on Dyson's transformations of sublattice spin 
operators and the Hartree-Fock approximation, is a good approximation to the 
ordering states of isotropic Q W M .  However, it works only when the temperature 
T is smaller than the Nee1 temperature TN [SI. Chakravarty, Halperin and Nelson 
(CHN) [9] have made a renormalization-group analysis of a (2+ 1)-dimensional non- 
linear sigma model to approach 2D QHAFM, concluding that the correlation length has 
a renormalization classical behaviour exp(A/T) where A is not equivalent to zero 
when T tends to zero. Auerbach and Arovas (AA) [lo] have developed a l a r g e 4  
theory of the quantum Heisenberg model based on a Schwinger boson representation 
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for a rotation-symmetrical disordered state. Hirsch and Bng (HT) (111 have shown 
by means of the Bose-Einstein condensation viewpoint that the AA theory holds 
well for the ordering state. Hirsch et a1 I121 have developed a linear sublattice- 
symmetrical spin-wave theory by requiring that the sublattice magnetization be set to 
be zero, and then have compared it with exactly-diagonalized results on finite-$@ 
lattices. Bkahashi [13] has presented a variational-modified spin-wave theory for the 
ZD square lattice, in which the spin-correlation length is same as the CHN one-loop 
result. It has been established [ l l ,  121 that at low temperature, the AA, Bkahashi and 
Hirsch theories are equivalent to  each other except for a factor 3R in the AA theory. 
All of the three spin-wave theories mentioned above are based on the following 
isotropic quantum Heisenberg Hamiltonian: 

where (ij) is the nearest-neighbouring site pair, as in the following. me 
isotropic Hamiltonian is not appropriate for a complete description of anisotropic 
antiferromagnefs such as the quasi-zo insulating cuprate antiferromagnefs, because it 
yields TN % J for the 3D case and TN = 0 for the ZD case. In [14] the random phase 
approximation (RPA) was used to investigate an anisotropic 3~ quantum Heisenberg 
antiferromagnetic Hamiltonian such as 

H = Jij Si . Sj 
l i j )  

where J.. = J if (ij) is in the zy plane and J,j = 6 J  if (ij) is parallel to 
the z axis. The Hamiltonian (2), with an appropriate 6 in the RPA, describes 
quite well the antiferromagnetic ordering of the insulating cuprate La,CuO, and 
RBa,Cu,O, materials [14]. As well as its advantage for quasi-zD antiferromagnets, 
the anisotropic Hamiltonian can also be used to describe quasi-ID antiferromagnets 
by letting 6 J = J' and J to he smaller than J'. 

In this paper we shall formulate a non-linear spin-wave theory for quasi- 
ZD quantum Heisenberg antiferromagnets defined by the Hamiltonian (2), which 
in isotropic cases reduces to the conventional non-linear spin-wave theory when 
T < TN [4,5], and leads to the same result as the variation-modified spin-wave 
theory [13]. Different from the Thkahashi variational method and the Husch et a1 
linearization method, our method is a Hartree-Fock approximation for the higher 
operator power terms. We prove that in the Hartree-Fock approximation the Dyson- 
transformed Hamiltonian [U] is equivalent to the Holstein-Primakoff-transformed 
Hamiltonian [16] truncated up to quartic operator terms. The spin-wave lifetime 
is obtained in the first-order approximation. For the ZD isotropic case we obtain 
Bkahashi's results, including the CHN one-loop renormalization-group behaviour of 
correlation length and the AA correlation functions except the factor Of 3R. The 
ground-state energy in our theory is -0 .335NJZ for the ZD square lattice, being 
equivalent t o  the digital result on 32 x 32 sites [17]. With the anisotropy parameter 6 
decreasing, our anisotropic theory yields a decreasing Nee1 temperature TN; TN =F 0 
if 6 = 0. The Nee1 temperature TN is much smaller than J if 6 is very small. When 
TN Q J, our theory is expected to work well not only for T < TN but also for 
T 2 TN. Our theory is very suitable for a description of quasi-zo (Or layer-like) 

'? 
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quantum Heisenherg antiferromagnets such as the interesting insulating cuprates. 
Applied to the antiferromagnetism of the cuprate La,CuO,, our quasi-20 non-linear 
spin-wave theory describes quite satisfactorily the existing experimental data of the 
N6el transition temperature, the correlation length above the Nee1 temperature, and 
staggered magnetization of the material if J = 1034 K and the anisotropy parameter 
is set to h e  4 x lo-’. 

In section 2 we propose the general theoretical framework of our quasi-20 non- 
linear (Hartree-Fock) spin-wave theory. In section 3 we calculate the interaction 
correction beyond the Hartree-Fock theory. In section 4 we derive ZD and 3D isotropic 
theories as two special cases of the anisotropic theory, and compare the ZD theory 
with other results. In section.5 we discuss the quasi-ZD case and its application to the 
insulating cuprate antiferromagnets. Section 6 includes some further discussions and 
our conclusion. 

2. General Hartree-Fock theoretical framework 

We first divide our lattice into two suhlattices, A and B, such that any site of 
sublattice A has all its nearest-neighbouring sites in sublattice B, and vice versa. 
We shall make Dyson’s transformations for spin operators in sublattices A and E, 
respectively. After 
making a Hartree-Fock approximation for the quartic terms of the Dyson boson 
operators, our Hamiltonian will be bilinear in the operators so that we can diagonalize 
it by means of a Bogoliubov transformation. As a result, we shall obtain a set 
of self-consistent equations. These equations will determine all physical properties 
at the Hartree-Fock level. In addition, we shall prove that at the Hartree-Fock 
approximate level the Dyson-transformed Hamiltonian is equivalent to Holstein- 
Primakoff-transformed Hamiltonian. 

Afterwards we transform to momentum space, or k space. 

On this bipartite lattice our quasi-2o QHAFM Hamiltonian (2) is 

H = J,,S, .Sn = J, , [S;$ + i(S,$,S; + S;S;)] (3) 
(nknl ( m n l  

where m labels the site of lattice A and n the site of lattice B. Here, for generality, 
J,, is direction dependent, Jzu = J and J ,  = 6 J .  We shall use the following 
Dyson transformation 1151: 

.SI = s - aka,, S: = &a, S; = JGa!,,(l - aLa,/Zs) (4) 

S: = bLb, - s S: = a b :  S; = &(l-  bLb,{Zs)b, ( 5 )  

where the Dyson boson operators a!, and b!, are Hermitian conjugate operators of 
a, and b,, respectively, and there are only the following non-zero commutation 
relations between these operators: 

[am,&,] = 6,,, [b,,b!,,] = 6,,,. (6) 
Substituting the transformations (4) and (5) into Hamiltonian (3) and making the 
following Fourier transformation 
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we obtain our transformed Hamiltonian 

H = J Z S  c[(1 + P ’ ) ( a i a k  -k b l b k )  + r k ( a k b k  + a i b l ) ]  
k 

1 - J ~ F  6i+4,z+3[r3-4ala~6:b4+f(ri~-ib:b-3b,+r2albJa!~a-4)1 

(8) 

1A3.4 

where rk = (2/Z)(cosk, + cosk, + 6cosk,) and Z = 4 + 26 is the effective 
coordination number. We have introduced a chemical potential p = J Z s p ’  in the 
above Hamiltonian. It should be noted that Hamiltonian (8) is not Hermitian. 

Following [4] and [SI, we make the Hartree-Fbck approximation (HFA) in 
Hamiltonian (8). Letting 

(9) t 

we obtain the following effective Hamiltonian in HFA: 

( a k a k )  = ( b k b k )  = V k  ( a k b k )  = (atkb!) = t k  

HHF = x [ e k ( a i a k  + b i b , )  + f k ( a k b k  + a!btk)1 (10) 
k 

where ek  and f k  are given by 

The Hamiltonian (10) can be diagonalized by a Bogoliubov transformation [SI. The 
diagonal Hamiltonian is given by 

HHF = x W k ( A : A k  t BLBA.) + (13) 
k 

where 

w k  = Eo = c ( w k  - e k ) .  
k 

The Bogoliubov transformation is defined by 

where p k  and uk are given by 
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From the effective Hamiltonian (13) and the Bogoliubov transformation (15) We Can 
formally obtain qk and c k  as functions of ek , f k ,  and wk:  

q k = - - +  - +  1 )" 
2 r 2 e@JJ,. - 1 W k  

The average sublattice spin is given by 

Because wk,  ek and fk all are functions of qk and tk, qk and E k  must be determined 
consistently by (17) and (18) together with ( l l ) ,  (12) and (14). 

Define 

where e k ,  f k ,  and w k  can be expressed in terms of a, b and c: 

ek = J Z s ( l - a - 2 6 - 6 c ) ( l + p " )  (21) 
fk = J Z s ( 1 -  a - 2b - 6c)r,,(k) (22) 

(23) w k  = JZs(1-  a - 2b- 6 c ) J m ~  

where 

&'I = &'/(I- a -2b-  6c) 

1 - a  - c(2+ 6) 
1 - a  - b(2+ a ) '  6' = 6 

Our problem now reduces to solving consistently (20)-(23). As in [12,13], we shall 
set p = 0 in the ordering states. In fact, the chemical potential p can be considered 
as a variational parameter in the above derivations. Varying the zero-temperature 
energy Eu with respect to p, we conclude that p = 0 makes the zero-temperature 
energy reach its minimum. Therefore it is reasonable to set p = 0 for the ordering 
states. Keeping p = 0, (SL) will decrease with increasing temperature. There 
is a temperature at which (SL) = 0 and above which (Sk) becomes negative. 
This temperature is called the Nee1 transition temperature TN. This Nee1 transition 
temperature TN is determined by (20) together with p = 0 and (S3)  = s( 1 - a )  = 0. 
However, from our original postulation, (SL) must be non-negative. lb keep (S:) 
non-negative, we must allow 1.1 to be non-zero above the Nee1 temperature TN. 
Following Hirsch et a1 [12] and lhkahashi [13], we require ( S 3 )  = 0 when T > TN. 
This leads p to be non-zero above TN. In summary, TN with (b,c), as functions 
of the two parameters J and 6, will be determined by the conditions p = 0 and 
a = 1 ((Sk) = 0). Below TN (SL) = s(1 - a )  with (b,c), as functions of 
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temperature T and parameters ( b , c ) ,  will be determined by the condition /L = 0. 
Above TN, p with ( b , c ) ,  as functions of T and ( b , c ) ,  will be determined by a = 1 
or (SL) = s(1- a) = 0. 
On the other hand, we can consider our Hamiltonian (8) to represent a system 

of the boson operators a, and b,. At high temperature there k no spin order so 

It demands a chemical potential to keep the total a boson number and the total b 
boson number unchanged, respectively, at different temperatures. It is expected that 
at a temperature, TN, our boson system will experience a Bose condensation so that 
the chemical potential will be zero. The U(l) symmetry of Hamiltonian (8) makes 
& C,(a);a,)  = k C k ( b l b k ) .  The total condensed a boson numbers-& Ck(alak)  
and the total condensed b boson number S -  k &(bib,)  are identical with ( S z )  and 
-(Sz), so that we have an antiferromagnetic order below T,. In this interpretation, 
TN is the Bose condensation temperature of our boson system, at which the chemical 
potential becomes zero and (SL) = (S:) = 0. 

As we have emphasized, the Dyson-transformed Hamiltonian (8) is not Hermitian. 
But the effective Hamiltonian in HFA, (10). is Hermitian. If we make use of the 
Holstein-Primakoff transformation [16] instead of the Dyson transformations (4) and 
( 5 ) ,  we shall obtain a Hermitian Hamiltonian. ltuncated up to quartic terms, it 
is equivalent. to the Hermitian part of the Dyson-transformed Hamiltonian (8), or 

that (aka,)  = (bhb,) = s for all m and n, or &~,(a,a,) t = & C k ( b r b k )  = s. 

( N  + H t ) / 2  

(26) + ~ ~ z ( ~ ~ b ~ a ! , a - 4  + a _ , a _ 3 b ~ a l ) l .  t 

It is obvious that at the Hartree-Fock level HHP leads to the same results as 
does the Dyson-transformed non-Hermitian Hamiltonian (8). It is our H a r t r e e  
Fock approximation that cuts off the non-Hermitian part of the Dyson-transformed 
Hamiltonian (8). 

3. Interaction correction beyond the Hartret+Fock approximation 

Tb go beyond the Hartree-Fock approximation, we shall take into account the 
contribution of the Hartree-Fock ( n o n h e a r )  spin-wave interaction. It is expected 
that the interaction will modify the Hartree-Fock spin-wave spectra and lead tO 
a finite lifetime for the Hartree-Fock spin waves. Because the original DySOn 
Hamiltonian (8) is non-Hermitian, we shall make use of its Hermitian part, 
( H  + Ht)/2 or HHP in (26), for our further work. We split the complete Hermitian 
Hamiltonian N in (26) into two parts 

H = H ,  + H ,  

where H ,  is defined as the Hartree-Fock approximated version of H given by formula 
(13). and HI = H - H ,  describes the interactions of the spin waves. The term can 
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be expressed in terms of the operators A, and B,. Since Ho is diagonal with respect 
to the non-linear spin-wave operators A, and E,, H1 will be the interaction between 
the non-linear spin-waves A, and B,. We can obtain the interaction correction by 
means of the Green function method in the cutoff approximation. Detailed calculation 
of the Green function will be presented in appendix 1. In the Fourier-transformed 
form our result is 

( ( A k ?  A:))(w) = l / [ w  - w k  - x,(w)l  (27) 

where X,(w) is defined by 

(28) ) JZ L t 1 , Z ~ k J + z - k , 1 , 2  + q , , D k  ,1.1+2- L .z 
w - w1 - WZ + wI+Z-, w + w1 - - w1+2- k 

X,(w) = jjs E( 
1,z 

where w has been defined in (14), and the L and D will be defined in appendix 1. 
Here we give only the A, Green function. The B, Green function has the same 
form. It should be noticed that X,(w) = 0 when T = 0. This implies that there is 
no interaction contribution to the spin-wave spectra and lifetime at zero temperature. 
At zero temperature the spin waves have infinite lifetime. At finite temperature, 
however, we have X,(w 5 io+) = X,,(w) 5 iXzk (w) .  The spin-wave interaction 
has a contribution to the spin-wave spectra X:(w),  and gives the spin wave a finite 
lifetime l / X 2 , ( w )  at finite temperature. It is vely difficult to work out analytical 
expressions for low-frequency and long-wave limits. 

4. WO- and three-dimensional isotropic cases 

For general 6 our Hartree-Fbck spin-wave theory is a 3D anisotropic theory. However, 
if we let 6 = 1, we shall obtain a 3D isotropic theory. Similarly, if we let 6 = 0, we 
shall obtain a ZD isotropic theory. As its first application we shall discuss its ZD and 
3 0  isotropic cases and compare it with other spin-wave theories. For isotropic cases, 
it is easy to prove that ?-,-,,E,, = r,  E,, r,,Fkl. The terms w, and ( S 3 )  can 
be simplified to 

For the sc lattice, ?I = 0.45824 (181. The function C(n) is the Riemann C function 
of order n. The term CO = [( 1 / N )  E, 6 r2 - 1]/2s  = -0.097/2s; Eo and Si 
are the average energy and sublattice spin of the HAFM ground state: 

Eo=-NJZs2(1-Co)2 S: =s-O.O78. (32) 
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The average sublattice spin of the ground state is the same as that of linear spin 
theory [6]; it is 0.422 for s = f. The ground-state energy is lower than the linear 
spin-wave result; it is -0.301NJZ for s = i, in contrast with -0.298SNJZ in 
linear spin-wave theory [6]. As T increases, (5') decreases. This can be seen in 
(30). When T approaches the Nkel temperature TN, (S')  tends to zero. The Nkel 
temperature TN has to he determined consistently with (S3) = 0. The result is 
TN = 1.079J, being larger than the 0.9895 of RPA theory [?',I41 and the 0.9515 of 
the series expansion method [19]. 

In two dimensions the summation in (30) with p" = 0 diverges when the 
temperature T is non-zero. So there is a Nee1 ordering state only at T = 0 in 
two dimensions, in agreement with the Mermin-Wagner theorem [20]. In the case 
C, = -0.158/2s, the average energy and sublattice spin of the ground state are 
Eu = -NJZsZ(l-CU)* and Si = s-0.197. F o r s  = 4, we have Eu = -0.335NJZ 
and S; = 0.303. This ground-state energy is equivalent to Carlson's digital result 
-0.335NJZ on 32 x 32 sites [ 17). The sublattice spin value is equivalent to the linear 
theory result, but the energy is lower than the -0.329NJZ of linear theory [6]. In 
one dimension, the summation in (30) with p" = 0 diverges even at T = 0. So there 
is no Nkel ordering state in one dimension. 

When T > TN, I"'' should be non-zero in order to keep (S') = 0. This is 
different from the situation discussed above. In three dimensions TN is so large that 
for T > TN large thermal effects make any spin-wave theory give way to a high- 
temperature series expansion theory. We will discuss no further the T > TN case 
in three dimensions. In contrast with the 3D isotropic case, we have TN = 0 in two 
dimensions. Spin-wave theories should be good up to some, quite high, temperature. 
The terms qk and t k  are given in this case by 

Correlation functions (aka,,,,), (bLb,,), and (amb,) can be expressed in terms of 
q k  and t k :  

1 ik(m'-m) t b ,) = - 1 qke'k("-"') 

(35) 
N k  

(bn n (a!nam,) = q k e  
k 

1 ik(m-n) 
(amb, )  = C t t e  

k 

Using a technique similar to the 'hkahashi method, we shall make use of Dyson's 
transformation and Wick's theorem in the derivation of spin-correlation functions. 
Detailed calculations are presented in appendix 2. As a result, the spin-correlation 
function (S, * S,) has the following large-r asymptotic behaviour: 
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where the spin-correlation length is given by 

where p is defined by p = rrJZssu(l - C,,)/2. It is interesting that this correlation 
length is in agreement with the CHN one-loop renormalization group result [9]. In 
the same way, we can derive our magnetic susceptibility x ( T ) :  

2 T  + o ( T ~ ) .  - SU - 
3JZ(1- C,,) + 3nJZZZs2(1 - 

Since we have TN = 0 in the ZD case, the above correlation function, correlation 
length and magnetic susceptibility work within a wide temperature range, from zero 
to a temperature comparable with the coupling constant J .  It should be pointed out 
that our main results in the 2D square lattice case have been obtained by 'Ilkahashi 
in his variational modified spin-wave theory. But our Hartree-Fock theory is very 
different from the Takahashi variational theory 113). Furthermore, our theory can 
work not only in the ZD case but also in 3D cases including isotropic and anisotropic 
cases. 

5. Quasi-2o case and its application to the insulating cuprates 

It is established experimentally that the cuprates, such as La,-,(Sr,Ba),CuO, and 
RBa,Cu,O,-,, are quasi-zo materials. The undoped cuprates, such as La,CuO,, are 
quasi-ZD antiferromagnets. Essentially they are  three-dimensional, but their coupling 
in the z direction is very weak with respect to their in-plane coupling. As a result 
they exhibit 2D behaviour at very high temperatures, but the interplane coupling is 
indispensable for them to maintain a finite Nee1 temperature. Our theory, with a small 
6, is very suitable for a theoretical description of these materials. We shall calculate 
the Niel temperature, spin-correlation function, correlation length and sublattice spin 
for the quasi-2~ case, and fit the theoretical results with corresponding experimental 
data. Because there are only two parameters, J and 6, in our theory, we shall 
consider the agreement to be successful. In addition we shall present the sublattice 
spin of linear spin-wave theory for qntrast  with our theory. 

In terms of the theoretical framework proposed in section 2, the Nkel temperature 
TN is determined by solving the following equations: 

wk = JZs(-26- 6 c ) d l -  r i , ( k )  (42) 
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where 6' = 6 c / b .  If 6 = 1, b = c so that the b equation in (39) is identified with 
the c equation in (39). We need to solve only two of the three equations in (39) 
for TN and b. If 6 = 0, the anisotropic 3D theory reduces to a 2D theory so that 
the summations in the first two equations in (39) diverge for T > 0. It implies 
that the equations in (39) have no solution for T > 0 in two dimensions. Detailed 
discussions on the 2~ case has been included in section 4. For very small 6, we can 
solve the equation set (39) analytically. The k summations for very small 6 in (39) 
are dominated by those in the region of small k, and I C , .  It is easy to solve the three 
equations in (39). The solutions are given by 

It should be pointed that the above asymptotic TN solution is not an accurate 
expression for TN because TN depends very weakly on 6 when 6 approaches to 
zero, and it is very difficult to calculate the coefficients more precisely. It can be used 
only for quality usage. TN decreases with decreasing 6; TN = 0 if 6 = 0. This is 
the above result that there is an ordering state only for T = 0 in the 2D isotropic 
model. When s = 1/2, we have TN = ~ J / l n ( l / 6 ) ,  half the RPA result [14]. For 
other 6, a digital calculation is required to obtain accurate TN. Figure 1 is our 
digital TN result for 0 < 6 < 1. The (A) curve is normally scaled; the (B) curve is 
logarithmically scaled to emphasize the TN for very small 6. For 6 = 1 we obtain 
TN = 1.0795, a little larger than the series expansion result 0.9515 [19] and the RPA 
result 0.9895 [14]. 

0 0.2 0.4 0.6 0.8 1 

1 

0.8 

0.6 0.6 

+= 0.4 0.4 

0.2 0.2 

7 

0 10 WO% 
6 

Figure 1. TN/ J as a function of 6 far J = 112. Curve A is normally scaled. Cuwe B is 
scaled logarithmically to emphasize the region of very small 6. For 6 = 1, TN 1 J = 1.079. 

In general for all temperatures, our consistent equation set is (20), with q k  and 
tk defined in the following way: 

R I ,  = -: + (1+ P " ) F ~  (k = -~h,( .k)Fk (44) 

and 
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wk = J Z s (  1 - a - 2b - 6 c ) 4 (  1 + pL")2 - 4,(k). (9 
The p" and 6' terms in the above three equations are defined by (24) and (25). 
Following the discussion on the 2D isotropic case, we derive the following correlation 
functions: 

(S, - Sm,) = 86,,,,, + [(a - (aka,)) + ( C Z ~ Q ~ , ) ] ~  

(S,. SA = -[(a - (4%)) - (.,b*)lZ 

(47) 

(48) 

where 

From expression (47) we obtain (S, . S,) = S(S+  I )  for all temperatures, the result 
we expect. ck qk = as. In section 2 it was shown that 
(S3)  = ~ ( 1 -  a ) ,  and a = 1 for T 2 TN. Therefore, the correlation functions (47) 
and (48) for T 2 TN reduce to 

For T < TN, we have (aka,)  = 

(S,. S,,J = (bLam,))*  (S,. S,) = -((Q"hJ>z. (50) 

Since fi'' js small for TN < T < J ,  we obtain Ea 5 -qL in the region of small 
( I C , ,  k,, k,) so that the correlation functions of large r can be expressed in a unified 
way: 

and a, for large r is dominated by at for small momentum k. For small I C ,  we 
derive in momentum space 

2T 1 
at z J Z s ( - 2 b -  6 c )  k: .t k$ + 6kS ++'I 

(53) 

so that for large r in real space 
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Temperature (K) 

Figure 2. Comlation length as a function of temperature. The cirdcs and q u a m  are 
aperimcnlal data for NlT#2 (TN = 195 K) and N l T M  (TN = 245 K). The bmken 
curve is the CHN result fitting to the bath data. Their theoretical TN is zem because of 
the Wodimensionality of their model. The full curve is our bes(-filld rerull far NTr#7 
with J = 1034 K and 6 = O . w O O 4 .  

where the correlation lengths <,, in the zy plane and <, in the z direction are 
defined by 

E,, = 1 1 4 0  tz  = m I 4 .  (56) 

The correlation lengths in (56), as all the above quantities, are in units such that the 
lattice constant d is equal to 1. In normal units, the correlation lengths are given by 

E,, = d / 4 0  E ,  = m d d / 4 .  (57) 

The correlation lengths are functions of T, 6 and J .  
When T < TN, the averaged sublattice spin (S') = s(1- a). The a with b and 

c is determined by (20) and (U)-(&) with N'' = 0. It requires digital calculation. 
Through a, (S') is a function of T, 6 and J .  

There are two parameters, J and 6, in our theory. Tb apply our non-linear quasi- 
2D spin-wave theory to the insulating cuprate antiferromagnets, we fit our theoretical 
TN and correlation length as a function of temperature with the real experimental TN 
and correlation length, respectively. This determines the two parameters. With fixed 
J and 6, we compare our theoretical sublattice spin with the experimental one. The 
circles and squares in figure 2 are experimental correlation length data of La,CuO, 
N n # 2  (TN = 195 K) by Endoh er a1 [2] and N'IT#7 (TN = 245 K) by Yamada 
er al [2], respectively. The broken curve is the CHN result fitting to the data by 
Yamada el a/ (21. The CHN TN is zero because of the two-dimensionality of their 
model. The full curve is our best-fit theoretical correlation length result for N'lT#7 
with J = 1034 K and 6 = 0.00004. Our TN is 245 K. Since we have used the 
SC lattice to describe the materials, we have taken a constant d = 3.79 as did 
Yamada er al [2]. The Nee1 temperature TN is very sensitive to holes doped into 
La,CuO,; N'lT#7 has TN = 245 K, but N'IT#2 has only TN = 195 K There are 
many holes in N'IT#2 so that the effect of the holes should be considered for fitting 
a theory to the experiment. Since our theory is formulated without considering the 
hole effect, we do not fit our theory to NlT#2. We present our sublattice spin (S') 
as a function of reduced temperature T/TN in figure 3. The full curves in figure 3 
are our theoretical (S') for 6 = 0.00004 and 1. The (S3) for 6 = 1 is presented 
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for comparison. For contrast, we present sublattice spins of linear spin-wave theory 
(broken curves). Comparing with RPA and high-temperature series expansion resuk.s, 
linear spin-wave theory yields too large a Nee1 temperature. Although both theories 
agree at very low temperature, there is a large difference between them a t  relatively 
high temperature, as figure 3 shows. At low temperature the ( S 3 )  for 6 = 1 decreases 
with T very slowly. But the (S3)  for 6 = O.ooOO4 decreases with T quite quickly. 
At T = TN/2, the ( S 3 )  for 6 = O.ooOO4 become smaller than 0.2. This is consistent 
with the experimental result by Yamada er 01 121. 

.- v1 E a 0 . 4  0 ' 5 R  0.3 

0.1 ..., 

U 
5 6=4x10-' 
; 0.2 

VI 

..... 

0 0  
0.0 0.2 0.4.0.6 0.8 1.0 

Temperature T/TN 

Figure 3. Sublattice spins as a function of reduced temperature T/TN. The full 
curve8 are the sublattice spins of our Hart-Fod: (non-linear) spin-wave theory. Thc 
result of linear spin-wave theory is placnted for comparison. linear spin-wave theory 
overestimates the NCcl tcmperature. 

6. Discussions and conclusion 

Based on the HT proof [ll], the AA Schwinger boson theory is equivalent to 
Anderson's linear spin-wave theory [6]. The sublattice-symmetrical theory by Husch 
et 01 is also a linear spin-wave theory because they have used the linear spin-wave 
transformation [ 12). The variation modified spin-wave theory [13] includes the quartic 
operator terms so that it js a non-linear spin-wave theory. At very IOW temperature, all 
three theories are equivalent to each other except for the factor 312 in the AA theory 
in the light of the Bose-Einstein condensation viewpoint. But at higher temperature 
some differences appear. The non-linear theory can work at higher temperatures 
because it takes into account the quartic operator terms. Our theory is also a non- 
linear spin-wave theory, taking into account the quartic operator terms. Besides, it is 
an anisotropic theory based on the anisotropic Hamiltonian (2), in contrast with the 
other theories based on the isotropic Hamiltonian (1). In isotropic cases, it is identical 
with the conventional non-linear spin-wave theory for T < TN. and leads to the same 
result as the modified spin-wave theory for the 2D square lattice. The ground-state 
energy in our theory is - 0 . 3 3 5 N J 2 ,  being equivalent to the digital result on the 
32 x 32 site [17], for the ZD square lattice. For very small 6, TN < J ,  so that our 
can work satisfactorily at T < TN as well as at T > TN (up to J ) .  Therefore, our 
anisotropic theory is advantageous over other theories in the description of anisotropic 
antiferromagnets such as the insulating cuprate La,CuO, and RBa,Cu,O,. 



8352 Bang-Gui Liu 

As for the one-dimensional case, we should say that our theory does not work 
as well as other spin-wave theories. This results from the fact that we postulate a 
long-range antiferromagnetic order in spin-wave theories, but there is no long-range 
order in one dimension. In our theory, if we try to make it work, we shall have a 
non-zero chemical potential for all temperatures. As a result we shall obtain a gap in 
our spin-wave spectra even at zero temperature, and an exponential decay, not power 
decay, for our spin-correlation functions at zero temperature. It is a drawback not 
only in our theory, but also in all other spin-wave theories. 

In summary, we have formulated a non-linear spin-wave theory that reduces to 
conventional non-linear spin-wave theory for T < TN, and leads to the same result 
as the modified spin-wave theory for the ZD square lattice. We have proved that in 
the Hartree-Fbck approximation the Dyson-transformed Hamiltonian is equivalent 
to the Holstein-Primakoff-transformed Hamiltonian truncated up to quartic terms. 
The spin-wave lifetime has been obtained in the first-order approximation. For the 
ZD square lattice we have obtained nkahashi's results, including the CHN One-lOOp 
renormalization-group behaviour of the correlation length and the AA spin-correlation 
functions except the factor of 3/2. Our theory is suitable for a description of quasi- 
two-dimensional quantum Heisenberg antiferromagnets such as the cuprate L.a,CuO,. 
Since for very small 6, TN *: J, so that our theory can work satisfactorily at T < TN 
as well as T > TN (up to J). Applied to the antiferromagnetism of the cuprate 
La,CuO,, our qUaSi-ZD non-linear spin-wave theory describes quite satisfactorily the 
existing experimental data of the Nee1 transition temperature, correlation length above 
the Nkel temperature, and staggered magnetization of the material if J = 1034 K 
and the anisotropy parameter is set to be 4 x 
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Appendix 1. Green function of the interacting HF spin-waves 

H ,  is diagonal in the operators A, and E,. Expressed in terms of the operators A, 
and E,, the interaction part HI is 

where 
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(A1.3) 

’&,4 = ‘2-3(@IpZp3@4 + v1v2v3u44) + $r1-2(p1&u2u4 + v1v3p2fi4) 

+ fr3-4(pZpdUIU3 + k/+’Zv4) + $-4(p1uzv3v4 + U 1 p Z k k )  

+ I T I ( h k p 3 v 4 +  ~ I U Z u 3 ~ 4 )  + + r z ( q w w 4  + p 1 k v 3 f i 4 )  

+ ~ r 3 ( v 1 ~ Z v 3 u 4  + p l U 2 p 3 p 4 ) .  (A1.4) 

We shall use the equation-of-motion method of the Green function to calculate the 
lifetime of the spin waves. A detailed description of the method can be found in 
(71 and (141. We define retarded and advanced Green functiow of the operator A, 
by ((Ak(t).AI(i‘)))R,A = ([Ak(t),A!.(t’)])R,A. The retarded and advanced Green 
functions of the operator A, satisfy the same equation of motion: 

I 

The second term in the right-hand side represents the interaction of the spin waves; 
[Ak(t ) ,H1]  = - J Z &  W,,,,2 where Wk,l,z is defined by 

Wk,I,Z = ~ $ , 1 + 2 - , , 2 ( ~ ~ B I + Z - ~ A Z  - 6, ,z (B:~ , )A, )  + ( ~ , , 1 + 2 - k , 1 , 2  

+ bl+z-L,lr.l.Z)(AI+I-LA1A2 - 6,,Z(AfAI)A, - 6k,l(A1AZ)Ak) 

In order to take in account the interaction in the Green function method, we 
make equations of motion of ( (B~Bl tZ- ,Az  - 6 , , ~ ( B ~ ~ 1 ) A , ( t ) , A ~ ( i ~ ) ) )  and 
( (A~tz- ,AIAz - (6,,1(AfiA2) + 6,,2(AfA - l))Ak(t),AL(t’))), and use a cutoff 
approximation in their equations of motion. In the first-order approximation they can 
be expressed in terms of the Green function ((A,(t),AL(i’))): 

where 

L3,Z = J ~ W + 2 - k , I , d ~ l +  nlnlt2-k + nlnz - nzn1tz-d 

and L & z  are defined by 

(A1.6) 

LS,, , ,  = JZ[nltz-k(l + RI) + nZn1tz-k - nln2l(~l ,z , l t2-k,* + D 2,1,1+2-k,L 

+ ~ 1 , Z , k , l + 2 - k  + b z , l , k , l t 2 - k ) .  (A1.7) 

As a result, we obtain [Ak(t ) ,  H I ]  = XkAk(t ) ,  where X I ,  is defined by 

xk (‘Fjd) = 
L$,ZD,, l ,I ,2- , ,2  + .  J Z  L ~ , l , z ~ ~ , l t 2 - k , l , z  ;( i(ddl) - w1 - wz + wIt2-, i (d/dt)  + w1 - w 2  - wIt2-, 

(A1.8) 
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Substitution of [ A , ( t ) ,  H , ]  = X , A , ( t )  into (A1.6) leads to the Green function that 
includes the spin-wave interaction effect: 

(A1.9) 

(A1.lO) 

Appendix 2. 2D spin-correlation functions 

Similar to the Thkahashi method, we shall make use of Dyson's transformation and 
Wick's theorem in the derivation of spin-correlation functions. Define q = & E, q,. 
After using Wick's theorem the spin-correlation function (S, . S,,) is derived 

(S, . S,,,,) = S' - s((Q!,,Q,) + ( Q , , Q , ~ )  t - (aka,,) - (Q, ,Q,)  t - 6m,m,) 
t 

t t t 
+ (QkQ,)(Qt,,Q,,) + ( Q k Q d ) ( Q d Q J  
- (Q,Q,,(.LQ,,) - ( Q m , Q m , ) ( Q m , Q m ) .  

(s, . s,,) = 56,,,, + If. - v) + (a!, Q,,,,)]' 

('42.1) 

Noticing that (aka,,) = (a! , , ,~ , , , )  and (aLa,) = q, we derive 

('42.2) 

where s - q is the average sublattice spin at the zero temperature. In the same way, 
noticing (a,b,)  = (a? , ,~! , ) ,  we derive 

(S,. S,) = -[(. - v) - (Qmbn)l2.  ('42.3) 

In (A2.2) we have (S, . S,) = S(S+ l), as it should be. When the temperature T is 
equivalent to zero, the correlation functiow have the following asymptotic behaviour 
for very large T: 

p" should be small when the temperature T is low. Suppose that 

Keeping the relation (S3)  = 0 in mind, we derive 
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On the conditions in (A2.6), the k summations in (A2.7) and (A2.8) are dominated 
by contributions of the domain k -. 0. Noticing rk = ;(COS k, +cos k u )  cz 1 - k z / 2  

or 4- r, d m ,  we derive 

(A2.10) 

where D = BJZs(1-C) and tu = D m .  In the present 2D case, C,, = -0.078/s 
and 6s" = 0.197. Equations (A2.8) and (A2.9) constitute a set of non-linear 
equations. They are solved approximately by 

C = C, + rrT3 - z d T 6  -k o(T") (A2.11) 1 - c,, 

f l = e x p ( - p / T ) ( e + o ( T ) ) - '  nsuT (A2.12) 

where OL = 4 C ( 3 ) / ~ J ~ Z ~ s ~ ( l -  CO) and p =  ~ J Z s s , ( l -  C,)/2. When T tends to 
infinity, the correlation function (&) has the asymptotic behaviour 

(A2.13) 

Substituting this asymptotic correlation function into (A2.2) and (A2.3). we obtain 
our spin-correlation function for large r: 

(A2.14) 4T2 E 
(S,, . S,) = exp(inr) nJ2ZZs2(1- Co)2 -exP(-./O r 

where the spin-correlation length is given by 

where p is defined by p = RJZSSu(1- C,)/2. 
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